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Global modes of the thermal convection type in the Rayleigh–Bénard–Poiseuille
(RBP) system are analysed for the case of non-uniform heating of the lower wall.
Specifically, a single two-dimensional ‘hot spot’ or ‘temperature bump’ giving rise
to a finite region of local instability is considered. For the case of the lower
wall temperature varying slowly on the scale of the RBP cell height, i.e. for a
gentle temperature bump, WKBJ asymptotics are used to construct an analytical
approximation of the linear global mode. At the same time, an analytical selection
criterion for the critical global mode is derived from the breakdown of the WKBJ
expansion at a double turning point located at the top of the temperature bump. The
analytical construction and the underlying assumptions are supported by comparison
with direct numerical simulations for Gaussian temperature bumps of elliptical
planform not necessarily aligned with the mean flow. From these comparisons, it is
concluded that the proposed analytical construction indeed yields the most amplified
global mode, which is characterized by an essentially transverse orientation (normal
to the mean flow direction) of the convection rolls, independent of the planform of
the temperature bump. The paper concludes with preliminary DNS results on the
saturated global mode shape and a discussion of possible connections to the ‘steep’
fully nonlinear global modes found for one-dimensional inhomogeneities of the basic
state.

1. Introduction
Most instabilities of practical interest are developing on ‘imperfect’ basic states,

i.e. on basic states which are spatially inhomogeneous or spatially varying in
more than one direction. For certain inhomogeneities, such systems can develop
instabilities which remain spatially localized. Among those, we will focus on
localized instabilities which are temporally synchronized (which have the same
frequency and temporal linear growth rate throughout the field). Such instabilities
are referred to as ‘global modes’. Once destabilized, they are self-excited and
represent an intrinsic response of the basic state to an infinitesimal, but
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otherwise arbitrary initial disturbance, i.e. the same global mode results from
any sufficiently small initial disturbance. In this sense, an unstable global mode
in an inhomogeneous system is perfectly analogous to an absolute instability in
a parallel or homogeneous system (see Huerre & Monkewitz 1990). The classic
example for global modes is the von Kármán vortex street in two-dimensional bluff-
body wakes (see e.g. Provansal, Mathis & Boyer 1987; Roussopoulos & Monkewitz
1996).

The above mentioned characteristics of a self-tuned instability or global mode imply
that the corresponding linear stability analysis has to provide a selection criterion
which predicts the intrinsic global mode frequency, temporal growth rate and mode
shape for a given set of control parameters. This selection criterion is a consequence of
both the inhomogeneity of the basic state and the physical instability mechanism(s).
Since the latter vary spatially in strength or even in nature within an inhomogeneous
system, the frequency selection criterion for a global mode cannot be simply derived
from an algebraic dispersion relation. This situation is unlike that encountered in
parallel systems, where the standard linear stability analysis results in the dispersion
relation in which all but one parameter can be chosen freely.

Whereas an arbitrary variation of the basic state is usually accessible to stability
analysis only through experiments or numerical simulations, a ‘slow’ variation of
the basic state (relative to a characteristic instability length scale) opens the door to
analytical investigations. The slow variation justifies a first approximation consisting
of treating the system as locally parallel, and hence, the location appears only as a
parameter in the local homogeneous stability problems. This is analogous to optics
where light propagation through inhomogeneous media can be described by the
eikonal equation of geometrical optics when the wavelength is small compared to
the scale of the inhomogeneities. For historical reasons, such an approximation is
called the WKBJ expansion after Wentzel–Kramers–Brillouin–Jeffreys (see Jammer
1966; Bender & Orszag 1978, for mathematical and historical developments). Since
the leading WKBJ approximation for the linear global modes to be considered here
is given by the solutions of the local homogeneous (linear) stability problem, it
is intuitively clear that the concept of (local) absolute instability, defined by the
linear impulse response and introduced in hydrodynamics by Huerre & Monkewitz
(1985), plays an important role in the analysis of global modes in weakly non-
parallel systems. Physically speaking, local absolute instability is associated with
zero group velocity of the local absolute instability modes and hence permits
perturbation energy to ‘accumulate in place’. From the above, it is clear that a global
mode selection criterion cannot be obtained from the leading order (geometrical
optics) WKBJ approximation. We therefore have to proceed to the next order
(to physical optics) which determines how the different local solutions inter-relate.
In the WKBJ formalism, this is described by a slowly varying amplitude which
multiplies the leading-order approximation. This physical optics approximation can,
however, break down, as the governing equation for the slowly varying amplitude
can have turning points where the coefficients of the highest derivative(s) vanish.
For systems presenting a one-dimensional slowly varying basic state, such turning
points have been related to selection criteria and the intrinsic behaviour of the
instability, first for arbitrary dynamic equations (Huerre & Monkewitz 1990; Chomaz,
Huerre & Redekopp 1991; Le Dizès et al. 1996), then for more realistic flows as, for
instance, spatially developing shear flows (Monkewitz, Huerre & Chomaz 1993) and
more recently Rayleigh–Bénard–Poiseuille (RBP) convection (Carrière & Monkewitz
2001).
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It appears that this last system, in which a low-Reynolds-number laminar Poiseuille
flow is added to the Rayleigh–Bénard (RB) thermal convection cell, is a valuable
‘guinea-pig’ to study global instabilities, as it exhibits a transition between convective
and absolute instability (see Carrière & Monkewitz 1999) and is closely related
to the extensively documented RB system. In addition, particular inhomogeneities
of the system, such as lateral confinement or a thermal entry, have already been
studied experimentally and numerically and are known to influence strongly the
morphology of the instability (see Kelly 1994; Nicolas 2002, for a review). Finally, an
inhomogeneity in the RBP system can be realized in a natural fashion by spatially
variable heating of the bottom wall, for instance, thereby creating a ‘temperature
bump’ in the boundary condition.

The present study extends the analytical procedure presented in Martinand,
Carrière & Monkewitz (2004, hereinafter referred to as MCM04), where an envelope
formalism was used to analyse synchronized global modes in RBP systems which
are inhomogeneous in all three space directions (‘slow’ inhomogeneity in the two
horizontal directions and the usual ‘fast’ inhomogeneity in the vertical direction). The
validity of the envelope equation, derived from the Navier–Stokes equations with the
Boussinesq approximation, was, however, limited a priori to transverse rolls (with
axes perpendicular to the mean flow direction) and to near-critical conditions with
infinitesimal Reynolds number, as discussed in Carrière, Monkewitz & Martinand
(2004). Furthermore, owing to the different scalings of the streamwise and transverse
directions in the envelope equation, the temperature bumps had to be restricted
to mirror-symmetric shapes with respect to at least one horizontal coordinate axis.
These restrictions imposed on the envelope formalism effectively prevent its use as
a model even for a practical laboratory experiment, not to speak of any system
of more technological interest. To relax them, the WKBJ global mode analysis has
to be carried out on the governing equations (continuity, Navier–Stokes and energy
equations with the Boussinesq approximation) themselves rather than on the envelope
equation as in MCM04. The present study also builds on previous analysis handling
the full set of equations, but restricted to a single slowly varying direction in RBP
convection (Carrière & Monkewitz 2001).

This is the general programme for the present study. Specifically, we analyse the
situation where the cold top wall is held at a constant temperature and the bottom
wall temperature has a slowly varying two-dimensional bump, such that the region
of local instability is compact, i.e. such that the system is stable away from the
finite-sized temperature bump. In the following, we focus on global modes for this
type of inhomogeneity. These modes will appear to comply with the mechanisms of
selection and the principles of construction determined for one-dimensional bumps
in Carrière & Monkewitz (2001). Consequently, the analytical part of this paper
concentrates on technical issues raised by the two slowly varying directions. A
thorough account of this analysis can be found in Martinand (2003).

The paper is organized as follows. In § 2, the slowly varying basic state, which can
no longer be expressed analytically because of the temperature bump, is determined
in the form of a power series in the small parameter ε, defined as the ratio of the
instability wavelength (or roll diameter) to the characteristic dimension of the bump,
i.e. characterizing the slowness of the spatial variation in the horizontal directions. In
§ 3, the instability on this inhomogeneous basic state is expressed as the leading order
of a WKBJ expansion in terms of ε, and the breakdown of this WKBJ expansion
at turning points is discussed. At this point, the choice is made to consider global
modes associated with a double turning point in both horizontal space directions and
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this turning-point region is analysed in § 4. From the matching requirements between
this ‘inner’ turning-point solution and the ‘outer’ WKBJ solution, the sought-after
global mode selection criterion is finally expressed. Then, the choice of the double
turning point for the construction of the global mode and different assumptions of a
more technical nature are then justified in § 5 by comparison with direct numerical
simulations. In the final § 6, the usefulness of the developed analytical global mode
approximation is demonstrated with a parametric study looking into the effect of
Prandtl number and of the maximum lower wall temperature (the bump height) on
the global instability threshold, and some DNS results on the nonlinear stages of the
global mode evolution are presented.

2. Basic state
We consider a flow imposed by a horizontal pressure gradient and bounded by two

differentially heated horizontal walls, where the upper wall is held at the constant
temperature Θ†

u (throughout the paper, the † identifies dimensional quantities but has
been omitted for univocal parameters and coefficients which are de facto dimensional),
while the temperature of the lower wall Θ

†
l (x

†, y†) is a function of both horizontal
coordinates x† and y†. In the following, it is assumed that the function Θ

†
l (x

†, y†)
has a single maximum Θ

†
l,0 at x† = y† = 0 and tends to a constant lower bound Θ

†
l,∞

as x† → ±∞ or y† → ±∞. Typically, Θ
†
l,∞ will be chosen such that the RBP system

is locally stable far away from the temperature ‘bump’ at the origin. Furthermore,
we focus on situations where the lower wall temperature Θ

†
l (x

†, y†) varies slowly on
the scale of the gap between the horizontal walls. This is expressed by making Θ

†
l

dependent on slow variables X† and Y † alone, where slow and rapid variables are
linked by X† = εx† and Y † = εy†, with ε � 1 a small parameter characterizing the
deviation from spatially homogeneous conditions.

The velocity, pressure and temperature fields – U†, P † and Θ†, respectively – are
solutions of the continuity, Navier–Stokes and energy equations simplified by the
Boussinesq approximation, i.e. with constant density except in the buoyancy term and
constant transport coefficients:

∇ · U† = 0, (2.1a)

∂t† U† + (U† · ∇)U† +
1

ρ
∇P † − α(Θ† − Θ†

r )gez − ν∇2U† = 0, (2.1b)

∂t†Θ† + (U† · ∇)Θ† − κ∇2Θ† = 0, (2.1c)

with the following boundary conditions:

U†(z† = ±h/2) = 0, (2.2a)

Θ†(z† = h/2) = Θ†
u, (2.2b)

Θ†(z† = −h/2) = Θ
†
l (X

†, Y †), (2.2c)

where the coordinate origin is taken to be halfway between the horizontal walls
spaced apart by h, ρ the density, g the acceleration due to gravitational in the
negative z-direction, ν the kinematic viscosity, α the thermal expansion coefficient
and κ the thermal diffusivity (all these parameters being dimensional) at the reference
temperature Θ†

r = Θ†
u .

The basic state, on which the global mode analysis will be performed, is the steady
laminar solution U† =(U †, V †, W †) of system (2.1) which is sought in terms of a
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power series in ε. Taking the leading-order pressure gradient to be aligned with the
x-direction, it reads

P
†
b (x†, X†, Y †, z†) =

ρνκ

h2
{P0(x, X, Y, z) + εP1(X, Y, z) + O(ε2)}, (2.3a)

U†
b(X

†, Y †, z†) = U†
mU0(X, Y, z) + ε

κ

h
U1(X, Y, z) + O(ε2), (2.3b)

Θ
†
b (X

†, Y †, z†) − Θ†
u =

νκ

αgh3
{Θ0(X, Y, z) + εΘ1(X, Y, z) + O(ε2)}, (2.3c)

where non-dimensional quantities (without †) have been introduced as follows:
lengths are made non-dimensional with h,
velocities with the thermal diffusion velocity κ/h, except for the leading-order

velocity U†
0 in the expansion (2.3) which is made non-dimensional with the maximum

velocity U†
m of the Poiseuille flow induced by ∂xP

†
b ,

time with h2/κ ,
pressure with ρνκ/h2 and
temperature with νκ/(αgh3).

The resulting non-dimensional control parameters are
Reynolds number R = U †

mh/ν,
Prandtl number P = ν/κ and
local Rayleigh number R(X, Y ) = (αgh3)(Θ†

l (X
†, Y †) − Θ†

u)/(νκ), based on the local
temperature difference between the upper and lower walls. It has a lower bound R∞
far away from the origin where Θ

†
l = Θ

†
l,∞ and a single maximum R0 at the origin

(X, Y ) = (0, 0) where Θ
†
l = Θ

†
l,0.

The orders O(ε0) and O(ε) of the basic state (2.3) are evaluated in a similar fashion
to § 2 of Carrière & Monkewitz (2001). It yields at leading order O(ε0):

P0 = P̃0(z)R − 8RPx + 1
40

[R − R∞]; P̃0(z) = 1
2
z(1 − z), (2.4a)

U0 = 1 − 4z2, (2.4b)

V0 = 0, (2.4c)

W0 = 0, (2.4d)

Θ0 = Θ̃0(z)R; Θ̃0(z) = 1
2

− z. (2.4e)

As expected, the homogeneous Poiseuille flow aligned with the leading-order pressure
gradient in the x-direction and the pure conduction solution for the temperature are
recovered.

The order O(ε) contribution to the basic state, which, compared with Carrière &
Monkewitz (2001), also has a velocity component in the spanwise y-direction, is
obtained as:

P1 = RP P̃1(z)∂XR + H ; P̃1(z) = z
480

(16z5 − 16z4 − 20z3 + 40z2 + 7z + 25), (2.5a)

U1 = −Ũ1(z)∂XR , (2.5b)

V1 = −Ũ1(z)∂Y R; Ũ1(z) =
(
z − 1

2

)(
z + 1

2

)( z2

24
− z

12
− 7

480

)
, (2.5c)

W1 = 0, (2.5d)

Θ1 = −RPΘ̃1(z)∂XR; Θ̃1(z) = 1
120

(
z − 1

2

)(
z + 1

2

)
(24z3 − 20z2 − 14z + 25), (2.5e)
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Figure 1. Example of the local Rayleigh number R for a Gaussian temperature bump with
σ1 = 5, σ2 = 10 and ψ = π/4. The local stability properties, evaluated for R = 0.85 and P = 7
as in Carrière & Monkewitz (1999), are shown by shading with increasingly lighter shades of
grey for the stable, convectively unstable and absolutely unstable regions.

The only remaining unknown function is H (X, Y ) in P1. It can be determined at the
next order, O(ε2). However, since P1 will not appear in the following formulation
of the stability problem, the determination of H (X, Y ) is not necessary. To revert to
unstretched coordinates in (2.5) for the first-order corrections, the derivatives ∂X and
∂Y are simply replaced by ε−1∂x and ε−1∂y .

Expressions (2.4) and (2.5) remain valid for any slow function R of x and y. To
illustrate the approximation of the basic state and to construct examples of global
modes in the following sections, a Gaussian temperature bump or ‘hot spot’ with an
elliptic planform is used, from which a local Rayleigh number is deduced:

R(x, y) = R∞ + (R0 − R∞)

× exp

[
− x2

2

(
cos2 ψ

σ 2
1

+
sin2 ψ

σ 2
2

)
− y2

2

(
sin2 ψ

σ 2
1

+
cos2 ψ

σ 2
2

)
− xy

2
sin 2ψ

(
1

σ 2
1

− 1

σ 2
2

)]
,

(2.6)

where ψ is the angle between the x-axis and the principal axis ‘1’ of the elliptic
temperature bump.

An example of such a bump is shown in figure 1, together with the parameters
used for its definition, and the corresponding first two orders of the basic state, given
by (2.4) and (2.5), are presented in figure 2.

3. WKBJ analysis of linear global modes
This section is devoted to the linear stability analysis of the basic state derived in

the previous section. For this, a time-dependent perturbation v = T(p, u, v, w, θ ) (the
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Figure 2. Basic state corresponding to R of figure 1 at z = 0.2. (a, c) First-order corrections
εV 1 and εΘ1. (b, d) First two orders V 0 + εV 1 and Θ0 + εΘ1.

T standing for transpose) is added to the basic steady state T(Pb, Ub, Vb, Wb, Θb). The
instability is sought as a synchronized global mode, for which the complex frequency
ω is the same in the whole physical domain, but otherwise unknown. As the dynamics
of such an instability are intrinsic, ω must emerge from the global mode construction
itself, as shown in the next section.

Owing to the slow spatial variation of the basic state characterized by ε � 1, the
global mode is constructed as a WKBJ expansion (its domain of validity will be
discussed at the end of this section) and the perturbation is expressed using the
standard WKBJ ansatz:

v = {v0(X, Y, z; ω) + εv1(X, Y, z; ω) + O(ε2)} exp

[
i

ε
Φ(X, Y ) − iωt

]
+ c.c., (3.1)

with the complex frequency expanded as

ω = ω0 + εω1 + O(ε2) (3.2)

and the wavevector k related to the phase Φ by

k(X, Y ) = ∇Φ(X, Y ). (3.3)

Its components are denoted by kx and ky and its norm by k. The stability equations
at the different orders in ε are deduced from system (2.1), non-dimensionalized as
stated in § 2 and linearized about the basic state.
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Since obtaining the equations satisified by the leading order of the WKBJ expansion
builds on the analytical approaches presented in Carrière & Monkewitz (2001) and
MCM04, only a condensed analysis is presented here.

3.1. Leading order of the WKBJ expansion

The stability equations at order O(ε0) imply that v0 is a solution of the homogeneous
local problem pertaining to a fixed station (X, Y ). This problem takes the form of the
generalized eigenproblem (A 1) in the Appendix with eigenvalue ω0:

Mv0 − ω0Nv0 = 0 (3.4)

and vanishing boundary conditions (A 4). In (3.4), operators M and N are given
by (A 2) and (A 3), respectively. The leading order of the perturbation (3.1) is then
sought in the form:

v0 = A(X, Y )v̂0(kx(X, Y ), ky(X, Y ), R(X, Y ); ω0; z), (3.5)

where v̂0 is conveniently normalized and A(X, Y ), the amplitude of the leading order
of the WKBJ expansion (3.5), is hereinafter simply referred to as ‘the amplitude’.

Since X and Y appear only as parameters, the eigenvalue problem (3.4) with
boundary conditions (A 4) yields the local dispersion relation between the wavevector
k, the leading-order frequency ω0 and the three control parameters R(X, Y ), R and
P :

D(kx, ky, R, ω0, R, P ) = 0 (3.6)

together with the continuity of phase:

∂Y kx = ∂Xky. (3.7)

Restricting the dispersion relation to the most unstable eigenvalue for ω0 and
considering R and P fixed, (3.6) and (3.7) are equivalent to the following first-order
nonlinear partial differential equation satisfied by Φ:

ω(∂XΦ, ∂Y Φ, R) = ω0. (3.8)

Note here that the function ω should not be confused with the global mode frequency
(3.2). Since we have assumed that the locally unstable region is confined to the
neighbourhood of the origin and we are excluding any forcing of the global modes,
their amplitude must vanish far from the origin. Since exp (iΦ (X, Y ) /ε) is dominant
for ε → 0, Φ must satisfy the condition:

Im(Φ) → ∞ as X → ±∞ or Y → ±∞. (3.9)

In a similar fashion to one-dimensional cases, the solvability condition of the
stability equations at order O(ε) yields the amplitude equation satisfied by A(X, Y ).
Without elaborating further on the exact integration of A(X, Y ), this amplitude
equation reads in a generic form (the explicit expression can be found in chapter 3 of
Martinand 2003):

∂XA ∂kx
ω(X, Y ; ω0) + ∂Y A ∂ky

ω(X, Y ; ω0) + A
{

−iω1 + 1
2
∇Xkx · ∇k∂kx

ω

+ 1
2
∇Xky · ∇k∂ky

ω + ∇XR · ∇k∂Rω + Γ0(X, Y ; ω0) + Γ1(X, Y ; ω0)
}

= 0. (3.10)

In (3.10) ∇X = (∂X, ∂Y ), ∇k =(∂kx
, ∂ky

), Γ0(X, Y ; ω0) gathers the contributions due to

spatial derivatives of the order O(ε0), (2.4), of the basic state and Γ1(X, Y ; ω0) gathers
the contributions due to the order O(ε1), (2.5).
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3.2. Rays, gauge choice and WKBJ breakdown: the construction of a
three-dimensional global mode

The leading order of the WKBJ expansion is expressed in terms of the function
Φ (X, Y ), solution of the dispersion relation (3.8), and of the amplitude A (X, Y ),
solution of (3.10). Both these equations are first-order partial differential equations,
a priori with complex coefficients, and can be integrated along their characteristics.
Parameterized by the curvilinear coordinate S – scaling as X and Y – the characteristics
(Xc, Yc) of both equations (3.8) and (3.10) are solutions of:

X′
c(S) = ∂kx

ω S, (3.11a)

Y ′
c(S) = ∂ky

ω S, (3.11b)

the superscript S meaning that the different functions are evaluated at (Xc(S),
Yc(S)).[ . . . ] Along these characteristics, the variations of k and A are given by:

dSkx = −∂Rω S∂XR S, (3.12a)

dSky = −∂Rω S∂Y R S (3.12b)

and

dSA = −A{−iω1 + Γ (Xc(S), Yc(S); ω0)}, (3.13)

with all of the terms due to the inhomogeneity of R and k as well as the terms
containing contributions of order 0(ε1) to the basic state in (3.10) further gathered
in Γ (X, Y ; ω0). By casting this construction in the form of the ray-tracing method
(as described in Lighthill 1978, p. 317), the optical interpretation of the WKBJ
expansion is clearly evident. Integration of (3.8) and (3.10) can be performed along
the characteristics given by (3.11) as long as ‘gauges’ for A and Φ are known on a
curve intersecting all these characteristics. These integrations would also provide an
upper bound for the approximation Im(ω0 + εω1) of the global mode growth rate,
which would be a first step towards a selection criterion for the most unstable mode.
At this point, however, the only information that can be used for the gauge choice is
the boundary condition (3.9) satisfied by Φ , but it is unclear whether it always allows
the necessary values A and Φ on a curve intersecting all the characteristics to be
obtained with a complex frequency ω0 + εω1, which is so far arbitrary. Moreover, as
equation (3.8) is nonlinear, the evaluation of the characteristics and the integration
of Φ (X, Y ) must be performed simultaneously. This is definitely insufficient for the
integration of A and hence the leading order of the WKBJ expansion cannot, as it
stands, be obtained in a straightforward manner.

Apart from the difficulty of determining the WKBJ expansion in its domain of
validity, we must also investigate the possibility of its breakdown. As it is restricted
to describing slowly evolving instabilities, this expansion fails to capture dramatic
spatial changes such as reflections which occur at points (Xt, Y t) where

∂kx
ω t = ∂ky

ω t = 0, (3.14)

i.e. where the coefficients of both first derivatives of A vanish in equation (3.10).
These points, where (3.10) breaks down, are called turning points of the WKBJ
approximation. The superscript t is hereinafter used to indicate that the respective
quantities are to be evaluated at such a turning point. Physically, the vanishing group
velocity (3.14) at a turning point is related to the reflection of an incident wave due
to the local modification of the dispersion relation. From a heuristic point of view,
a set of turning points delimiting a simply connected domain in physical space can
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be thought of as imposing a resonance condition and associated quantizations of
the wavevector and frequency via reflections in the horizontal (x, y)-plane. If this
quantization implies a finite upper bound for the temporal growth rate Im(ω0 + εω1),
a selection criterion for the most unstable mode results.

Following previous results for one-dimensional inhomogeneities of the RBP system
(Carrière & Monkewitz 2001), we restrict this study to situations where the set of
turning points coalesces into a double turning point satisfying

∂Xω t = ∂Y ω t = 0. (3.15)

In RBP convection, owing to the instability mechanism, Im(ω(kx, ky, R)) is a strictly
growing function of R. Hence, generalizing results obtained within the envelope
equations formalism by Carrière et al. (2004), the double turning point must also
satisfy

∂XR t = ∂Y R t = 0, (3.16)

and is therefore located at the maximum of R (X, Y ), i.e. at the top of the temperature
bump Xt =Y t = 0. As arbitrary as the restriction to global modes governed by a double
turning point may look at this point, it will be put on firmer ground at the end of § 4.

4. Inner solution close to the double turning point and selection criterion
Since the WKBJ expansion breaks down at the double turning point, the

construction of the global mode requires a separate analysis in this region. The
inner solution in the vicinity of the double turning point – the WKBJ expansion
becoming in retrospect the outer solution – hence requires a ‘blowup’ (rescaling) of
the region around the top of the temperature bump.

4.1. Leading order of the inner solution and selection criterion of the global mode

Following exact results for double turning points in one-dimensional inhomogeneous
cases (see Wasow 1985; Le Dizès et al. 1996, for details), the inner solution for the
perturbation is sought in the form:

vt =
{
vt

0(χ, ϕ, z) + ε1/2vt
1/2(χ, ϕ, z) + εvt

1(χ, ϕ, z) + O(ε3/2)
}

× exp

[
i

ε1/2

(
kt

xχ + kt
yϕ

)
− iωt

]
+ c.c., (4.1)

where the new ‘intermediate’ coordinates χ = ε1/2x = ε−1/2X and ϕ = ε1/2y = ε−1/2Y ,
halfway between the ‘fast’ (x, y) and the ‘slow’ (X, Y ) coordinates, have been
introduced. The argument of the exponential in (4.1) comes from the leading order
of Φ(X, Y ) expanded around the turning point, while the frequency is still sought in
the form (3.2).

Next, the basic state is rewritten in terms of the intermediate variables χ and ϕ

and expanded about the double turning point (x, y) = (0, 0).

Ub(χ, ϕ, z) = Ũ0(z) + O
(
ε3/2

)
, (4.2a)

Vb(χ, ϕ, z) = O
(
ε3/2

)
, (4.2b)

Θb(χ, ϕ, z) = − 1
2

+ Θ̃0(z)R0 + εΘ̃0(z)

[
χ2

2
∂2

XR t + χϕ∂X ∂Y R t +
ϕ2

2
∂2

Y R t

]
+ O(ε3/2).

(4.2c)
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Since ∂XRt = ∂Y Rt = 0, up to order O(ε) only the temperature field of the basic state
exhibits horizontal variations in the vicinity of the double turning point. Noting that
these variations are already accounted for by the varying reduced Rayleigh number r

in the envelope equation formalism (see equation (3.8) in MCM04), the results of the
analysis carried out in § 3 of MCM04 for envelope formalism are then expected to
be transposable to the full set of governing equations. The main steps of this analysis
are summarized here.

At order O(ε0) of the inner stability equations, the homogeneous problem (3.4)
pertaining to (χ, ϕ) = (0, 0) with boundary conditions (A 4) is recovered. The leading-
order vt

0 of the inner solution is then sought as:

vt
0 = A(χ, ϕ)v̂0

t(
kt

x, k
t
y, R0; ω0; z

)
. (4.3)

Hence, the dispersion relation satisfied at the turning point

ω
(
kt

x, k
t
y, R0

)
= ω0 (4.4)

together with the turning point conditions (3.14) uniquely determine the leading-order
approximation ω0 of the global mode frequency and the wavenumbers (kt

x, k
t
y) as a

function of R0 alone. The inhomogeneity of the system will only appear in the
correction εω1. As obtained for one-dimensional bumps in Carrière & Monkewitz
(2001), the solvability condition at order O(ε1/2) can be satisfied without loss of
generality for vt

0. Finally, the amplitude equation for the inner region obtained from
the solvability condition at order O(ε) reads:

∂2
χA

∂2
kx

ω t

2
+ ∂2

ϕA
∂2

ky
ω t

2
+ A

{
ω1 − ∂Rω t

(
χ2

2
∂2

XRt + χϕ∂X ∂Y Rt +
ϕ2

2
∂2

Y Rt

)}
= 0,

(4.5)
assuming that condition

∂kx
∂ky

ω t = 0 (4.6)

is satisfied at the double turning point. As expected, (4.5) is similar to (3.10) in
MCM04, obtained in envelope formalism, but, whereas condition (4.6) is a direct
consequence of the dispersion relation in envelope formalism (see equation (2.7) in
MCM04), the practical justification for this assumption in the present general case
will have to be discussed in § 4.3.

Following the procedure in MCM04, the most unstable solution of (4.5) is found
to be of the form

A = exp
(

− 1
2
αχ2 − 1

2
βϕ2 − δχϕ

)
, (4.7)

where the coefficients α, β and δ are given by:

α = ε1

(∂Rω t)1/2
(
∂2

XRt∂2
kx

ω t + ε2λ
)

∂2
kx

ω t
(
∂2

XRt∂2
kx

ω t + ∂2
Y Rt∂2

ky
ω t + 2ε2λ

)1/2
, (4.8a)

β = ε1

(∂Rω t)1/2
(
∂2

Y Rt∂2
ky

ω t + ε2λ
)

∂2
ky

ω t
(
∂2

XRt∂2
kx

ω t + ∂2
Y Rt∂2

ky
ω t + 2ε2λ

)1/2
, (4.8b)

δ = ε1

(∂Rω t)1/2∂X ∂Y R(
∂2

XRt∂2
kx

ω t + ∂2
Y Rt∂2

ky
ω t + 2ε2λ

)1/2
, (4.8c)
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with

λ =
[
∂2

kx
ω t∂2

ky
ω t

(
∂2

XRt∂2
Y Rt − (∂X ∂Y Rt)2

)]1/2
, (4.9)

and (ε1, ε2) the unique pair of +1 and −1 which leads to a bounded amplitude
A (χ, ϕ), i.e. which permits us to satisfy the conditions

Re (α) > 0, (4.10a)

Re (β) > 0, (4.10b)

Re (δ)2 < Re (α) Re(β). (4.10c)

Solution (4.7) is obtained provided the condition

Im
(
∂2

kx
ω tα + ∂2

ky
ω tβ ±

[(
∂2

kx
ω tα − ∂2

ky
ω tβ

)2
+ 4δ2∂2

kx
ω t∂2

ky
ω t

]1/2)
< 0 (4.11)

is satisfied. The frequency correction ω1 compatible with the above O(ε1) solution is:

ω1 = 1
2
ε1

(
∂Rω t

)1/2(
∂2

XRt∂2
kx

ω t + ∂2
Y Rt∂2

ky
ω t + 2ε2λ

)1/2
. (4.12)

It is noted that, strictly speaking, this result for ω1 is obtained from the matching
of the inner solution to the outer WKBJ solution, which will be briefly discussed
in § 4.2. This matching has been anticipated here by requiring the amplitude to
appropriately decay in all directions away from the origin. It is further remarked
that this frequency correction, which contains all the effects of inhomogeneity,
vanishes only in very special situations that we do not elaborate further. Furthermore,
reconsider condition (4.11) which implies that Im(ω1) < 0, meaning, roughly speaking,
that the inhomogeneity of R, i.e. the decrease of R away from the maximum R0

at the origin has a damping effect relative to the local absolute growth rate ω0 at
the origin, in accord with physical intuition. With these results in hand, it is finally
possible to determine the most unstable global mode and the corresponding critical
physical and geometrical parameters.

4.2. Matching of the inner and outer solutions

Expanding the spatially varying kx and ky in the outer region about the double
turning point yields:

kx = kt
x + ∂Xkx

tX + ∂Y kx
tY, (4.13a)

ky = kt
y + ∂Xky

tX + ∂Y ky
tY. (4.13b)

Because of assumption (4.6), the matching of the outer and inner expansions of the
global mode requires:

∂Xkx
t = iα, (4.14a)

∂Y ky
t = iβ, (4.14b)

∂Y kx
t = ∂Xky

t = iδ. (4.14c)

Returning to the discussion of § 3, the system (3.11) defining the characteristics, along
which the governing equations for the leading-order WKBJ approximation must be
integrated, may be simplified close to the inner region as follows:

X′
c = i∂2

kx
ω t(αXc + δYc), (4.15a)

Y ′
c = i∂2

ky
ω t(δXc + βYc). (4.15b)

The eigenvalues of system (4.15) are

r± = 1
2
i
{
∂2

kx
ω tα + ∂2

ky
ω tβ ±

[(
∂2

kx
ω tα − ∂2

ky
ω tβ

)2
+ 4δ2∂2

kx
ω t∂2

ky
ω t

]1/2}
(4.16)
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and the condition (4.11) implies that exp(r±S) → 0 as S → −∞. The double
turning point is thus a stagnation point for a set of characteristics. The existence
of characteristics not originating from the double turning point remains an open
question, even though this situation seems physically questionable because such a
characteristic would, by the propagation of A and Φ along this curve, connect two
points which are infinitely distant from the unstable region.

The inner expression of the amplitude (4.7) provides the gauge for equation (3.10)
by imposing the value of the amplitude on a closed (complex) curve surrounding
the double turning point. Such a curve, for instance |x|2 + |y|2 = c2 with (x, y) ∈ �2

and c arbitrarily small, can be chosen so as to intersect, as discussed in § 3, all
the characteristics originating from the double turning point. System (4.14) similarly
provides the gauge on this curve to evaluate the characteristics given by (3.11) and
solve (3.8) along these characteristics. The behaviour of the WKBJ expansion along a
characteristic is thus slaved to the inner solution and the associated selection criterion
imposed by the double turning point. Therefore, as long as the global mode in �2

can be deduced from the integration in �2 along the characteristics originating from
the double turning point, the instability is of an intrinsic nature. This construction
of the WKBJ expansion of the global mode along characteristics would avoid the
difficulties highlighted in § 5 of MCM04 which are linked to the branch-cutting of
the complex wavevector components when solving the dispersion relation (3.6) for a
direct integration of the amplitude equation (3.10) in �2.

As discussed in § 3 of MCM04, the analytical evaluation of the most unstable global
mode relies practically on the physical consistency of the result. In other words, it is
necessary to check case by case that one and only one set of (ε1, ε2) matches conditions
(4.10) and that conditions (4.11) are satisfied with this set. This was found to be true
for all the cases analysed so far, but it does, of course, not guarantee a solution
in all cases. Removing this uncertainty would greatly improve the robustness of the
global mode analysis, but establishing conditions (4.11) directly from the dispersion
relation and condition (4.10) has not been possible so far. Remember also that the
analytical solution (4.8) has only been possible under condition (4.6), which appears
to be satisfied in the cases presented in § 4.3. It might be possible to circumvent this
condition which does not have obvious physical meaning, but at this point it is not
clear how restrictive this condition is. Finally, we must point out that the consistency
of the global mode construction outlined here does not exclude other possibilities,
such as global modes associated with a set of distinct simple turning points which
would be extensions of the modes discussed in Le Dizès et al. (1996). Nevertheless,
our limited numerical simulations of global modes (see § 5) have always produced a
most amplified mode of the double-turning-point type.

4.3. Examples with Gaussian temperature bumps of elliptical planform

The inner amplitude (4.7) provides an analytical approximation of the global mode in
the neighbourhood of the top of the temperature bump which is useful both because
it takes into account the effects of the inhomogeneity of the basic flow and because
it is valid where the global mode amplitude is largest:

v ≈ exp

(
− εαx2

2
− εβy2

2
− εδxy

)
exp

(
ikt

xx +ikt
yy − i(ω0 + εω1)t

)
v̂0

t
(z)+c.c. (4.17)

Reverting to physical unstretched coordinates x and y in (4.17), εα, εβ , εδ and εω1

are expressed by replacing the derivatives ∂X and ∂Y in (4.8) and (4.12) by ε∂x and
ε∂y . As outlined in the Appendix, the frequency approximation ω = ω0 + εω1, the
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Figure 3. Inner turning-point approximation of the temperature field for the critical global
mode with σ1 = σ2 = 20, R0 = 1800, R∞ = 1500, P = 7 and R = Rcrit = 0.505. The darker shades
correspond to low temperatures and lighter shades to high temperatures of the instability. The
stable/convectively unstable boundary (—) and the convective/absolute instability boundary
(– – –) are superimposed on the (x, y)-plane.

wavevector at the double turning point kt and the coefficients εα, εβ and εδ are
evaluated numerically from the most unstable solution, constrained by (3.14), of the
homogeneous stability problem at the top of the temperature bump.

For the generalized Gaussian bumps defined by equation (2.6) (see also figure 1),
several examples of the most unstable global modes have been determined for different
geometrical bump parameters σ1, σ2 and ψ and physical parameters R0, R∞, R and P .
An example with a round bump is shown in figure 3. Several features of this example
are noteworthy. (i) The amplitude at the turning point (x, y) = (0, 0) which governs
the mode is small. This feature is not unexpected, as it is also characteristic of most
one-dimensional global modes in open systems with through-flow as in Huerre &
Monkewitz (1990). (ii) The emerging travelling rolls are seen to grow spatially in the
downstream direction until they reach their maximum amplitude approximately at the
most downstream point of neutral stability. This is also not surprising as it is entirely
consistent with the characteristics of spatial instability waves evolving on a slowly
diverging mean flow (for a jet, see e.g. Crighton & Gaster 1976). (iii) The orientation
of the rolls is essentially transverse. For the circular temperature bump, this may be
expected from the mirror symmetry with respect to y = 0, but the same transverse
orientation has been observed for all the bump geometries, including skewed elliptical
bumps. Expressed in more technical terms, the homogeneous stability problem at the
top of the bump with the constraint (3.14) has always yielded a solution with kt

y =0,
i.e. pure transverse rolls. This may be explained by the fact that in the homogeneous
RBP problem only transverse rolls exhibit a transition to absolute instability (see
Carrière & Monkewitz 1999), which is required at the double turning point to obtain
a positive global amplification. As the inhomogeneity of the basic state does not enter
the leading-order stability problem in the inner turning-point region, the rolls are
expected to deviate only slightly from the transverse orientation throughout the inner
region, independently of the geometrical parameters of the bump. In summary, the
transverse orientation of the rolls is imposed by the mean flow direction and not by
the bump geometry. This is perhaps the most surprising feature of our global mode
solution, as we might think of an analogy to Rayleigh–Bénard convection in confined
geometries where it has been shown by Segel (1969) and Newell & Whitehead (1969)
that the wave vector aligns itself with the largest side of the convection cell. For
a high-aspect-ratio elliptical temperature bump, for instance, this would suggest a



Global modes in Rayleigh–Bénard–Poiseuille convection 289

roll orientation determined by the skew angle ψ (cf. figure 1) which is clearly not
compatible with our findings.

The observed selection of transverse rolls finally permits an assessment of the ad
hoc condition (4.6). Since, owing to symmetry, ky appears in (A 2) only as k2

y , condition
(4.6) is automatically satisfied by any solution with ky = 0. Hence, condition (4.6) does
not appear to be restrictive.

5. Comparison with numerical simulations
So far, the construction of the analytical global mode has relied on the assumption

that the most unstable mode is associated with a double turning point at the top of
the temperature bump. To assess the validity of this assumption and, by extension, of
the whole analytical approach, numerical simulations of the Navier–Stokes equations
subject to the Boussinesq approximation (2.1) have been performed and compared to
the analytical predictions obtained in § 4.

The code used is an extension of the Navier–Stokes code developed by N. Gilbert
and L. Kleiser for channel flow (see Gilbert 1988), to which the integration of the
energy equation and the possibility of spatially varying boundary conditions on
the horizontal plates have been added. The numerical solution is obtained by a tau-
collocation pseudospectral method in space, using Fourier modes in the slowly varying
directions and Chebychev polynomials in the confined vertical direction. The nonlinear
terms and the diffusion terms are discretized in time by an Adams–Bashforth and a
Crank–Nicolson scheme, respectively, resulting in second-order accuracy in time. As
the simulation focuses on the linear and weakly nonlinear evolution of the instability,
the de-aliasing of the nonlinear term in the spatial expansion of the solution is not
of crucial importance and has been eliminated to decrease the computational cost.
Owing to the Boussinesq approximation, the influence matrix method introduced in
Kleiser & Schumann (1980, 1984) can be used to evaluate the pressure, and the
pressure gradient is then discretized by an implicit Euler scheme. A characteristic of
the influence matrix method is that a divergence-free flow field is forced to remain
so throughout the time-integration. Hence, the initial velocity field is required to be
exactly divergence-free to avoid lengthy non-physical transients. The buoyancy term,
finally, is also discretized in time by an implicit Euler scheme since the energy equation
(2.1c) is solved before the Navier–Stokes equations (2.1b).

A simulation is started by imposing the mean longitudinal pressure gradient in the
form of a constant forcing term −8RP in the momentum equation and introducing
the spatially varying Rayleigh number R in the temperature boundary condition on
the lower wall. This allows us to use the original solver for Helmholtz equations with
constant coefficients written by Gilbert and Kleiser. The spectral method requires
periodic conditions in both the x- and y-directions. For an arbitrary temperature
bump on the lower plate, this requirement is satisfied by multiplying the spatially
varying part R − R∞ of the boundary condition R by a polynomial ‘hat’ function
which vanishes at the edges of the numerical domain. To prevent a significant
modification of the spatial dependence of R, the temperature bump has to be well
inside the numerical domain. Furthermore, the periodic boundary conditions in the
x- and y-directions also require the instability to vanish on the lateral boundaries in
order to prevent any upstream ‘contamination’ by a perturbation advected beyond
the downstream boundary of the numerical domain. Thus, the numerical domain
has to encompass both the temperature bump and the instability. For large R, R
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Figure 4. Total kinetic energy of the perturbation obtained by numerical simulations, with
R = 0.40, P = 7, R0 = 1800, R∞ = 1500, σ1 = 5, σ2 = 10 and ψ = π/4, for grids of 32 × 32 × 32
(+ + +), 64 × 64 × 32 ( · · ·), 80 × 80 × 32 (− · −), 96 × 96 × 32 (—) and 108 × 108 × 32
(− − −). The circle at t = 0 denotes the energy level of the initial perturbation, taken to be the
approximation (4.17) of the global mode.

and/or σ1,2, this leads to very large numerical domains and restricts the range of the
numerical simulations.

Once the computation is set up, the total field is calculated and the perturbation
is determined a posteriori by subtracting the analytical approximation of the basic
steady state (2.4) and (2.5) from the total field. This implies that the residual terms
of order O(ε2) in the analytical approximation of the basic steady state are not
segregated from the time-dependent perturbation and contribute to the perturbation
energy.

Owing to the computational cost, convergence tests for the spatial resolution have
been limited to a maximum of 1082 Fourier modes and 32 Chebychev polynomials
and are shown in figure 4. The simulations for this figure have been initialized by
the sum of the steady basic flow approximation up to the order O(ε), derived in
§ 2, and the analytical approximation (4.17) of the global mode. First, the initial
jump of the perturbation energy seen in figure 4 (from the initial level � to the
level + + +) requires a comment: it is due to the way the perturbation is extracted
from the total field for t > 0, i.e. to the numerically unavoidable contamination of
the perturbation by the order O(ε2) correction to the basic-state initial condition, as
already mentioned. In addition, the use of two consecutive identical flow fields to
initialize the time integration is known to cause an additional non-physical transient
with the scheme used here. Turning to the real purpose of figure 4, namely spatial
resolution tests, we can see that the simulations with the 80 × 80 × 32, 96 × 96 × 32
and 108 × 108 × 32 grids all produce time-shifted identical growth histories (identical
growth rates in the linear stage and identical saturation levels), whereas the problem
is clearly under-resolved by the two coarsest grids. The observed time shifts between
the growth histories for the three finest grids are of no concern here, as they simply
correspond to differences in the effective initial perturbation amplitude. Based on
these tests, all further simulations have been performed with 96 Fourier modes in
each horizontal direction and 32 Chebychev polynomials (96 × 96 × 32 basis functions)
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in the numerical domain (x, y, z) ∈ [−25, 25; −25, 25; −1/2, 1/2]. For all simulations,
a time step of �t = 1.25×10−2 satisfied the Courant–Friedrich–Levy (CFL) condition
(max(‖u‖) × �t)/ min(�zcollocation) < 0.7. At this point, it is worth going into more
detail on the implementation of initial conditions.

5.1. Initial conditions

The initial flow field is taken to be the stationary basic flow plus a perturbation.
The basic flow is approximated by (2.4) and (2.5) and the incompressibility of the
velocity field is satisfied by including in the initial condition the order O(ε2) of the
vertical velocity W . To avoid a bias in the selection of the most amplified global
mode by the system, the initial perturbation must consist of divergence-free noise,
satisfying the homogeneous boundary conditions on the horizontal plates for velocity
and temperature. This is achieved by taking for the perturbation velocity the curl of a
white noise and imposing v(z = ±1/2) = 0 and θ(z = ±1/2) = 0. This initial condition
has been implemented in a simulation and produces the history of perturbation
energy shown as a dashed line in figure 5. For this initial condition, the slow initial
transient, typical of many thermal convection systems, does not completely obscure
the linear stage of the instability growth, but in many other examples, the transient
led directly to the nonlinear stage and it was not possible to evaluate a linear growth
rate. In order to reduce the initial transient, the initial perturbation can instead be
taken as the analytical global mode approximation (4.17), thereby assuming that this
approximation is a good representation of the most dangerous global mode. This
approach has already been used successfully in MCM04 for the integration of an
envelope equation for RBP convection. The resulting evolution of the perturbation
energy in the present computation is shown as the solid line in figure 5. The main
result of the comparison between the two initial conditions in figure 5, is that both
initial conditions produce the same global mode (compare the two snapshots at
t = 625). Since we have not found any exception to this result, the most dangerous
global mode does indeed appear to correspond to the one we have constructed around
a double turning point of the WKBJ approximation.

5.2. Comparisons between DNS and analysis

The critical conditions, as the first result of any stability analysis, are a natural
point of comparison between the analytical and the numerical results. For practical
reasons, the Reynolds number is chosen here as the critical parameter, with instability
for R < Rcrit, while R (x, y) and P are kept fixed. Analytically, the selection criterion
presented in § 4 yields the frequency of the global mode as a function of R, P , R0,
R∞ and of the geometrical features σ1, σ2 and ψ . The critical Reynolds number for
the analytical global mode Rana

crit is obtained following the Appendix. For the direct
numerical simulations, the critical value Rnum

crit is determined by interpolating the point
of zero growth rate from a set of simulations for R on both sides of Rnum

crit (with R(x, y)
and P fixed), as shown in figure 6. For the case considered in figure 6, the analytical
and numerical critical Reynolds numbers are in excellent agreement. The difference
of 0.3% is well within the expected accuracy of both the analytical approximation
and the DNS. Note in the insert corresponding to R = 0.42, where the instability is
damped, that its decay is quickly screened by the residual O(ε2) terms of the basic
state. As seen in figure 7, the analytical approximation (4.17) of the global mode for
the inner turning-point region captures the essential features of the global mode shape,
despite the fact that the global mode is centred downstream of the turning point. Most
importantly, the numerical global mode shown in figure 7(d) confirms the essentially
transverse roll orientation predicted by the analysis. Even the slight curvature of
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Figure 5. Comparison of the evolution of perturbation kinetic energy obtained with
numerical simulations initialized by divergence-free noise (dashed line) and by our analytical
approximation of the global mode (solid line) for R = 0.41, P = 7, R0 = 1800, R∞ = 1500, σ1 = 5,
σ2 = 10 and ψ = π/4. For both initial conditions, snapshots of the initial perturbation at t = 0
and the resulting global mode at t = 625 near the end of the linear stage are provided in terms
of the vertical component w of the perturbation velocity at z = −0.278. The corresponding
perturbation energies are identified by � and �, respectively.

the rolls is similar in figure 7(c, d). Numerically, the maximum amplitude of the
instability is found close to the downstream stability boundary, downstream of which
the numerical solution exhibits a slowly damped tail which is much less pronounced
for the analytical global mode in figure 7(c). It is also noted that the maximum
amplitude for the analytical global mode is located slightly further upstream than for
the numerical one. Both these features (shorter tail and maximum amplitude located
further upstream) are due to the parabolic expansion (4.2c) of the temperature which
is used to construct the inner expansion of the global mode. This expansion of the
mean temperature causes R(X, Y ) to fall off more rapidly than the Gaussian (2.6)
away from the origin which explains the larger downstream damping and the small
upstream shift of the analytical global mode. To improve these shortcomings of the



Global modes in Rayleigh–Bénard–Poiseuille convection 293

0.38 0.40 0.42

–0.04

–0.02

0

0.02

0.04

0.06

0.08

0.10

R

Im(ω)

0 100 200 300 400
–4

–2

0

2

4

6

8

t

ln(einstab)

0 100 200 300 400
–2

0

2

4

6

8

t

ln(einstab)

0 200 400 600 800 1000
–2

0

2

4

6

t

ln(einstab)

0 100 200 300 400
–1

0

1

2

3

4

5

t

ln(einstab)

Figure 6. Numerical growth rates versus Reynolds number and critical Reynolds number for
R∞ = 1500, R0 = 1800, σ1 = 5, σ2 = 10 and ψ = π/4. The growth rates (� in the main figure)
are computed from the fit to the linear part (between the � in the four inserted figures) of the
logarithm of the perturbation kinetic energy. � in the main figure, critical Reynolds number
Rnum

crit = 0.4115 from DNS; ∗ in the main figure, analytical Rana
crit = 0.4128.

analytical approximation, the first order of the outer WKBJ expansion would have
to be determined, which we did not do for the reasons outlined in § 3.

6. More discussion and outlook
As it stands, the selection criterion and the global mode approximation presented

in § 4 are already useful for predicting and describing the evolution of synchronized
perturbations. Furthermore, they considerably facilitate parametric studies of such
instabilities owing to a reduced computational cost compared to DNS. When
considering possible improvements and extensions of the analysis, the missing
integration of the first-order outer WKBJ expansion, already discussed at several
instances (see in particular § 3), comes to mind. Remember that this integration
involves the determination of characteristics in �2 along which the homogeneous
stability problem has to be solved. This means that the linear stability problem has to
be solved for complex R which is uncharted territory and could dramatically restrict
the feasibility of the ray tracing method. In addition it is unclear whether the physical
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Figure 7. Comparison of global mode shape between analytical approximation and DNS,
with R = 0.40, P = 7, R0 = 1800, R∞ = 1500, σ1 = 5, σ2 = 10 and ψ = π/4. (a) Spatial variation
of R with superimposed local stability properties using the conventions of figure 1. (b) Time
evolution of the kinetic perturbation energy, initialized by the analytical approximation. Vertical
component of the perturbation velocity w at z = − 0.278, (c) for the analytical global mode
and (d) for the numerical simulation at t = 125, marked by � in (b). Superimposed on (c) and
(d) are the stability boundary (− − −), the convective/absolute instability boundary (—) and
the contour where the amplitude |w| reaches 5% of its maximum (· · ·), and the location of
the maximum amplitude (�).

(X, Y )-plane is densely intersected by the complex rays emanating from the double
turning point, i.e. whether the solution can be established on the entire (X, Y )-plane
by the complex ray-tracing method developed in § 3. In short, the integration of
the first-order outer WKBJ expansion appears to be a formidable task of definite
mathematical interest which may not, however, be all that useful as it concerns mainly
the low-amplitude parts of the global mode. In addition, for a practical situation where
the instability is started by a localized impulsive forcing or by a sudden appearance
of the temperature bump, we may argue that nonlinear effects become important
before the low-amplitude parts of the linear mode are fully established. Therefore,
we believe that it will be more useful to extend the present study to nonlinear effects
than to refine the linear WKBJ analysis. Before discussing this issue, however, we are
first demonstrating the usefulness of our analysis for parametric studies.
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Figure 8. Features of the most unstable critical global mode for different Prandtl numbers
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Reynolds number Rcrit(R0); (b) temporal period Tcrit(Rcrit); (c) wavenumber Re
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(R0),

(d) phase velocity (vt
φ)phys(Rcrit) and location of the maximum of the instability (e) xmax(R0)

and (f ) ymax(R0).

6.1. Parametric study

The parametric study presented here is limited to the variation of Rayleigh number
R0 at the top of a given temperature bump and of Prandtl number P . For more
exhaustive results, see Martinand (2003). The results of this parametric study for the
same skewed elliptical bump as in figures 6 and 7, are presented in figure 8 in terms of
the critical Reynolds number Rcrit, critical period 2π/Re(ω), streamwise wavenumber
Re(kt

x), the physically observed phase velocity vt
φ = Re(ω)/Re(kt

x), and the location
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(xmax, ymax) of the maximum amplitude of the analytical inner approximation (4.17).
This maximum is obtained from the magnitude of the z-averaged inner approximation
(4.17):∣∣∣∣ exp

(
− εαx2

2
− εβy2

2
− εδxy

)
exp

(
ikt

xx + ikt
yy

)∣∣∣∣
= exp

(
− Re(εα)x2

2
− Re(εβ)y2

2
− Re(εδ)xy

)
exp

(
− Im

(
kt

x

)
x − Im

(
kt

y

)
y
)
. (6.1)

From (6.1), it is immediately seen that the streamwise and lateral shifts of the point
of maximum amplitude are due to non-zero spatial growth rates (−Im(kt

x)) and
(−Im(kt

y)). Taking into account kt
y = 0, (6.1) yields the maximum amplitude of the

inner global mode approximation at

xmax = −
Re(εβ)Im

(
kt

x

)
Re(εα)Re(εβ) − Re(εδ)2

, (6.2a)

ymax =
Re(εδ)Im

(
kt

x

)
Re(εα)Re(εβ) − Re(εδ)2

. (6.2b)

It can be seen in figure 8(a) that the proportionality obtained in the homogeneous
situation (see Carrière & Monkewitz 1999) R2

crit ∝ (R − RRB
crit ), where RRB

crit = 1707.76 is
the critical Rayleigh number for Rayleigh–Bénard convection, is nearly reproduced,
save for a small modification by the inhomogeneity through εω1 – the smallest
R0,min for which a neutral global mode can be sustained at R = 0, for instance,
is found between 1734 and 1736, i.e. slightly larger than RRB

crit . Furthermore, as P

is decreased, the system becomes more unstable, i.e. Rcrit increases as physically
expected for decreasing viscous dissipation. This is also in accord with the trends
previously observed by Carrière & Monkewitz (1999) for the convective/absolute
transition in the homogeneous system. In figure 8(b), the roll passage period of the
marginaly unstable mode, plotted as a function of Rcrit, is diverging for R → 0,
which is consistent with the stationary cells found in the classical Rayleigh–Bénard
system at marginal stability. The roll spacing, as characterized by the real part of the
streamwise wavenumber shown in figure 8(c), is also seen to be relatively strongly
influenced by P , with small P leading to a larger spacing as physically expected for
increasing thermal diffusion. Figure 8(d), finally, reveals a nearly linear dependence
of the physical phase velocity on Rcrit.

6.2. Preliminary study of the global mode saturation

Numerical simulations have been used earlier in the paper to support the analytical
selection criterion developed for linear global modes. Here, they are exploited to
provide a preliminary picture of how these linear modes saturate. The main question
addressed here is how the mode shape changes when saturation is approached.
For one-dimensional slowly varying systems, Pier, Huerre & Chomaz (2001) have
demonstrated the existence of two possible nonlinear evolutions: one towards a
saturated ‘hat’-solution characterized by a mode shape similar to the linear mode
shape and pertinent to near-critical conditions, and another fully nonlinear ‘elephant’-
solution which develops a steep front at the upstream convective–absolute transition
point. According to Pier et al. (2001) the latter ‘steep’ solution is the one realized
by physical systems. A first and still incomplete survey of saturated two-dimensional
global modes (modes with two wave-propagating directions) of the RBP convection
tends to confirm the conclusions for one-dimensional slowly varying systems: for the
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Figure 9. Amplitude of the nonlinear saturated state represented by the vertical component w
of the perturbation velocity, for P = 7, σ1 = 5, σ2 = 10 and ψ = π/4 and (a) R = 0.38, R0 = 1800,
R∞ = 1500, (b) R = 0.85, R0 = 2000, R∞ = 1500. The local stability prorties are superimposed
using the conventions of figure 1.

example of figure 9(a) very close to critical, the global mode appears to saturate
as a hat-solution, while for the conditions of figure 9(b) further from critical, the
saturated mode clearly develops a steep ‘nose’ or three-dimensional front close to
the upstream convective/absolute instability boundary. While the two examples of
figure 9 look promising, a straightforward extension of the nonlinear selection criteria
proposed by Pier et al. (2001) for one-dimensional situations to systems with two
wave-propagation directions is far from obvious. For instance, already the definition
of a front in two dimensions becomes fuzzy as its shape and steepness will certainly
depend on the transverse curvature of the convective/absolute instability boundary.
We may ask, in particular, whether the saturated mode in figure 9(a) is really a
hat-solution or whether it is perhaps an elephant-solution with a nose that has been
flattened by transverse curvature because of the proximity to critical conditions. Since
these questions are of considerable mathematical interest and may even be of some
practical interest in real, imperfect (inhomogeneous) coating devices, for instance, the
thorough study of the nonlinear evolution of the global modes analysed in this paper
appears to be a promising direction for future research.
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Appendix. Practical evaluation of the analytical solutions
A.1. Solution of the local stability problem

Locally, the zeroth order of the global mode is a solution of the homogeneous linear
RBP stability problem (3.4) with R fixed to the local R(X, Y ). For generic eigenvector
v = t(p(z), u(z), v(z), w(z), θ(z)) and eigenvalue ω, the problem reads

Mv − ωNv = 0, (A 1)
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with

M =




0 −ikx −iky −∂z 0

ikx

+iRU0kx

+k2 − ∂2
z

0 RdzU0 0

iky 0
+iRU0kx

+k2 − ∂2
z

0 0

∂z 0 0
+iRU0kx

+k2 − ∂2
z

−1

0 0 0 −R
+iRPU0kx

+k2 − ∂2
z




(A 2)

and

N =




0 0 0 0 0
0 iP −1 0 0 0
0 0 iP −1 0 0
0 0 0 iP −1 0
0 0 0 0 i


 , (A 3)

with v satisfying the boundary conditions:

u
(
z = ± 1

2

)
= v

(
z = ± 1

2

)
= w

(
z = ± 1

2

)
= θ

(
z = ± 1

2

)
= 0. (A 4)

By taking the double curl of the linearized momentum equation and using the
continuity equation, (A 1) can be recast into a system of two coupled equations
involving the vertical component w of the perturbation velocity and the perturbation
temperature θ:

Au − ωBu = 0, (A 5)

with

A =

(
ikxR

(
U0

(
k2 − ∂2

z

)
+ d2

zU0

)
+

(
k2 − ∂2

z

)2 −k2

−R ikxRPU0 +
(
k2 − ∂2

z

))
, (A 6)

B =

(
iP −1

(
k2 − ∂2

z

)
0

0 i

)
(A 7)

and the eigenvector u = t(w(z), θ(z)) satisfying the boundary conditions:

w
(
± 1

2

)
= ∂zw

(
± 1

2

)
= θ

(
± 1

2

)
= 0. (A 8)

Problem (A 5) is solved by a tau-collocation spectral method using Chebychev
polynomials on 32 Gauss–Lobatto collocation points. Using the continuity equation
and the definition of the vorticity, the remaining components of the velocity u and v

are deduced from w and ωz as:

u =
1

k2
(ikx∂zw − ikyωz), (A 9a)

v =
1

k2
(iky∂zw − ikxωz), (A 9b)

where ωz, the z-component of the vorticity ω, is a solution of the generalized Squire
equation:

∂zωz + (iωP −1 − iRkxU0(z) − k2)ωz = iRkydzU0w, (A 10)
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with the boundary conditions:

ωz

(
± 1

2

)
= 0. (A 11)

A.2. Determination of the double turning point

The most unstable eigensolution of problem (A 5) for given R, P and Rt is
associated with a turning point if, in addition to the dispersion relation (4.4), its
complex wavevector (kx, ky) satisfies condition (3.14). The solvability conditions of
the derivatives of problem (A 5) with respect to kx and ky can be written as:

∂kx
ω = Akx

[u] − Bkx
[u], (A 12a)

∂ky
ω = Aky

[u] − Bky
[u]. (A 12b)

System (A 12) is obtained by introducing the derivatives of operators (A 6) and (A 7)
with respect to kx and ky: Akx

, Bkx
, Aky

and Bky
, and by using the inner product:

L[u′] =

∫ 1/2

−1/2

Lu′ · û∗
dz. (A 13)

In (A 13), L is one of the operators A, B and their partial deriatives with respect

to kx , ky (and, as introduced below, R and R), and û∗
is the complex conjugate

(−) solution of the adjoint (∗) local stability problem deduced from (A 5). The inner
product (A 13) is also used to impose [u] = 1 in (A 12). Numerically, the turning point
is found by a two-dimensional Newton–Raphson method, iterating on k until ∂kx

ω

and ∂ky
ω both become smaller than a threshold set at 10−5. The second derivatives of

ω with respect to kx and ky , required by the Newton–Raphson method, are obtained
from the solvability conditions of the second derivatives of problem (A 5):

∂2
kx

ω = 2Akx
[∂kx

u] + Akxkx
[u] − 2∂kx

ω(Bkx
[u] + B[∂kx

u]) − 2ωBkx
[∂kx

u] − ωBkxkx
[u],

(A 14a)

∂2
ky

ω = 2Aky
[∂ky

u] + Akyky
[u] − 2∂ky

ω(Bky
[u] + B[∂ky

u]) − 2ωBky
[∂ky

u] − ωBkyky
[u]

(A 14b)

and

∂kx
∂ky

ω = Akx
[∂ky

u] + Aky
[∂kx

u] + Akxky
[u] − ∂kx

ω(Bky
[u] + B[∂ky

u])

− ∂ky
ω(Bkx

[u] + B[∂kx
u]) − ω(Bkx

[∂ky
u] + Bky

[∂kx
u]). (A 14c)

Once the double turning point is reached in k-space, ω0 is the most unstable
eigenvalue, associated with the eigenvector ut and the different quantities (4.8) and
(4.12) appearing in the analytical approximation of the global mode (4.17) are then
evaluated by (A 14) expressed at this double turning point and by

∂Rωt = At
R[ut]. (A 15)

Analogous to the other derivatives, it is obtained from the solvability condition of
the derivative of (A 5) with respect to R. It has been verified that, in all the cases
studied, the double turning-point condition (3.16) leads to kt

y = 0, and ∂kx
∂ky

ωky
t = 0

(see also § 4).
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To compute the critical Reynolds number Rcrit, with all other parameters fixed,
the Newton–Raphson method is used to iterate on R until Im(ω) becomes smaller
than a threshold fixed at 10−4. For this, the derivative of ω with respect to R is
obtained as:

∂Rω = AR[u], (A 16)

with AR and the associated inner product defined as explained above.
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